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A non-isothermal viscoplastic thin-layer theory is developed to explore the effects of
surface cooling, yield stress, and shear thinning on the evolution of non-isothermal
domes of lava and laboratory fluids. The fluid is modelled using the Herschel–
Bulkley constitutive relations, but modified to have temperature-dependent viscosity
and yield stress. The thin-layer equations are solved numerically to furnish models
of expanding, axisymmetrical domes. Linear stability theory reveals the possibility of
non-axisymmetrical, fingering-like instability in these domes. Finally, the relevance to
lava and experiments is discussed.

1. Introduction
This article explores the dynamics of a cooling viscoplastic fluid which is extruded

onto a horizontal plate and spreads under gravity. The study is theoretical and
motivated by a particular problem in geological fluid mechanics: the expansion of
silicic lava domes. We continue a previous article (Balmforth et al. 1999, referred to
herein as paper I) that dealt with isothermal viscoplastic fluids.

Lava domes are created when crystal-rich silicic magma emerges from a vent and
take a variety of forms depending upon the effusion rate and magma rheology (Blake
1990; Fink & Griffiths 1998). Despite their low aspect ratio and slow evolution, these
structures are challenging objects to model because of their composition: silicic lava is
a strongly non-Newtonian fluid, with a significant yield stress and highly temperature-
dependent material properties (McBirney & Murase 1984). The fluid rheology is
complicated yet further by the phase change of solidification. These complications
have placed an effective barrier to mathematical discussions of the problem, and earlier
theoretical work is mostly confined to dimensional scaling arguments (see Griffiths &
Fink 1993). However, a mathematical approach is not the only avenue open.

Several previous studies of lava domes have chosen a more practical route and
conducted laboratory experiments with analogue fluids. Here, the lava is represented
by a fluid with similar and (apparently) known rheological properties. Experiments
then allow one to study dome evolution in a controlled environment. In this way,
isothermal lava domes have been modelled using viscous fluids (Huppert et al. 1982)
and water–kaolin slurries (Blake 1990); viscous fluids have no special significance
for lava, but clay slurries possess a yield stress. Analogue laboratory models of
non-isothermal domes have been developed using wax and corn syrup, fluids with
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temperature-dependent material properties (Fink & Griffiths 1992; Stasiuk, Jaupart
& Sparks 1993).

To date, the most ambitious analogue modelling has been conducted by Griffiths
& Fink (1997), who used a mixture of Polyethylene Glycol wax and kaolin. This
slurry has both a yield stress, a temperature-dependent viscosity, and solidifies near
typical room temperatures. Hence, this analogue material possesses three of the most
significant non-Newtonian effects present in lava. Griffiths & Fink’s experiments pro-
vide a wealth of data to compare with theoretical models. The experiments have also
been successful in rationalizing morphology seen in real lava flows: expanding domes
of clay–wax slurry can lose axisymmetry and develop complex non-axisymmetrical
shapes resembling ‘lobes’ or ‘petals’; similar features are also seen in real lava domes.

Our purpose in this article is to continue to develop a mathematical model of
both lava domes and experimental extrusions. We aim to model both because the
slurry domes are more accessible, and through understanding their dynamics we can
identify which features may also carry over to lava. The goal is to construct a model
that captures the important physics of lava domes and reproduces their structure and
evolution. However, this is a challenging enterprise both for the reasons mentioned
above, and because of further mathematical problems that are uncovered in the
present analysis. For this reason, we narrow our focus here and consider an idealized
problem: the expansion of a cooling viscoplastic fluid in the absence of solidification.
We do this both in the interests of simplicity, and because we would first like to
understand the dynamics of purely fluid domes.

Our study consists of four major parts. First, we summarize the essential physics.
This is the content of the next section. Then, by a suitable non-dimensionalization
(see § 3) we isolate the important dimensionless parameters of the problem and
set up the equations for asymptotic analysis. The parameterization should also aid
experimentalists in selecting the most relevant analogue materials.

Second, we exploit a certain asymptotic limit to simplify the governing equations
and derive a thin-layer model that can be used to study dome dynamics (§ 4). In this
special limit, the dome has low aspect ratio, evolves slowly, and thermal diffusion
acts sufficiently quickly to make the fluid isothermal in vertical cross-sections. Related
thin-layer models have been used to study thermocapillary effects on spreading viscous
drops (Ehrhard & Davis 1991) and spreading viscous melts in nuclear reactors (King,
Riley & Sansom 2000). A similar rapid diffusion limit is also useful for Marangoni-
driven thin-layer flows with a soluble surfactant (Jensen & Grotberg 1993). In § 5
we provide numerical solutions for axisymmetric, cooling domes, and indicate how
thermal effects influence the dynamics in these models.

Third, we consider the development of non-axisymmetrical domes as a prob-
lem of pattern formation: one explanation for the appearance of lobes is that ax-
isymmetrical expansion is linearly unstable to non-axisymmetrical perturbations. In-
deed, analogies with other problems (notably Saffman–Taylor fingering, the Mullins–
Sekerka instability in directional solidification, and thermocapillary droplet spread-
ing – Patterson 1981; Ehrhard 1993) suggests that the interplay between surface cool-
ing and temperature-dependent viscosity may give rise to thermal instabilities (see also
Whitehead & Helfrich 1991). In § 6, we use the thin-layer model to study fingering-type
instabilities and examine whether these can explain Griffiths & Fink’s observations
of slurry and lava morphology.

Finally, we discuss the relevance of the thin-layer model to real lava domes and
analogue experiments. For lava, the dome is unlikely to be vertically isothermal
because the diffusivity is small. Instead, the cooling of the surface creates a thermal
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boundary layer that slowly migrates into the fluid interior. Nonetheless, the theory
does appear relevant to some experimental materials.

2. Formulation
We consider a thin film of incompressible, non-isothermal fluid on a flat plane.

In cylindrical polar coordinates (r, θ, z) the fluid is described by the velocity field,
(u, v, w), density, ρ, pressure, p, and temperature, T . The equations for the film are
given by conservation of momentum, mass and energy:

ρ

(
ut + uur +

v

r
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= −pr + ∂rτrr +

1
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where τij denote the deviatoric stresses, γ̇ij is twice the rate-of-strain tensor (∂ui/∂xj +
∂uj/∂xi in Cartesian coordinates), g is gravity, cp is specific heat and K is the
conductivity. The subscripts (r, θ, z) denote partial derivatives, except in the case of
the stress components, τij , and then we use the notation ∂r , and so on.

2.1. Constitutive relations

To model the non-Newtonian properties of the lava or analogue material, we use
the Herschel–Bulkley constitutive relation. This choice is motivated as follows. The
microstructural explanation for a yield stress is that, in static fluid, suspended particles
or crystals become organized into an ordered structure held together by inter-particle
forces. This structure is able to resist weak stress before it breaks apart and flows,
hence providing the material yield strength. However, microstructure typically does
not instantaneously disintegrate as the fluid flows. Rather, material structure is
progressively broken up by increasing shear stresses. As a result of this more gradual
attrition of microstructure, the fluid is shear thinning above the yield point, with a
nonlinear relationship between the stresses and strain rates. The simplest fluid model
that captures this kind of behaviour is the Herschel–Bulkley constitutive model. The
model adequately describes many viscoplastic fluids, such as clay–water slurries and
muds, and rheological measurements suggest that it reproduces properties of lava
(Spera, Borgia & Strimple 1988; Pinkerton & Norton 1995).

The Herschel–Bulkley model is written as

τij = (Kγ̇n + τp)γ̇ij/γ̇ for τ > τp
γ̇ij = 0 for τ < τp,

}
(2.6)

where τ =
√
τjkτjk/2, γ̇ =

√
γ̇jkγ̇jk/2, τp is the yield stress, the consistency K provides
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a measure of resistance to shear, and n is the index. If n < 1 (n > 1), the fluid is shear
thinning (thickening). The kaolin slurries used in laboratory experiments show a very
marked nonlinear stress–strain-rate behaviour (see paper I): n ≈ 1

3
. For magmas,

viscometric studies suggest 1
2
< n < 1 (Spera et al. 1988; Pinkerton & Norton 1995).

The Herschel–Bulkley model was developed for isothermal viscoplastic materials,
and must be generalized to account for temperature dependence. For many materials,
the dominant effect of temperature is on the viscosity (consistency). However, for
lava, the concentration of the crystals that provide the principal non-Newtonian
effects gradually increases on lowering the temperature as the silicates crystallize in
the magma. Not only does this have a significant effect on the viscosity, but it can
also dramatically alter the yield stress. Thus, to generalize the rheological model
we replace the constants K and τp by some prescribed functions of temperature:
K = K(T ) and τp = τp(T ). We could, in addition, allow the index n to vary with
temperature, but in the interest of simplicity (and absence of rheological data) we fix
n. Moreover, because the temperature dependence of the density and conductivity is
usually weaker than the (often exponential) dependence of the viscosity, we take K
and ρ to be constant.

Although we do not need to specify the temperature dependence for the thin-layer
theory, we adopt the illustrative model

K(T ) = K∗ e−G̃(T−Ta) and τp(T ) = τp∗ e−S̃ (T−Ta), (2.7)

where K∗ and τp∗ are the values evaluated at the ambient temperature, Ta, and G̃ and

S̃ are prescribed constants. Such exponential forms for the temperature dependence
are commonly used for lavas (Shaw 1969; McBirney & Murase 1984; Spera et al.
1988; Pinkerton & Norton 1995), laboratory analogues (figure 5 of Fink & Griffiths
1990; Stasiuk et al. 1993), mud (Annis 1967; Briscoe, Luckham & Ren 1994), ice
sheets (Hutter 1983), polymer processing (Tanner 1985) and suspensions (Aral &
Kalyon 1984). These relations are often justified theoretically because the Arrhenius
reaction rate has exponential form in the Frank–Kamenetskii approximation.

2.2. Boundary conditions

For the velocity field, we impose

u = v = 0, w = ws(r, t) on z = 0, (2.8)

where ws(r, t) is a prescribed axisymmetric source function. We also take the plate
beneath the fluid to be thermally insulated: Tz(r, θ, z = 0, t) = 0. But, in the vent, fluid
effuses upwards at the ‘eruption temperature’, Te, which constitutes an incoming heat
flux across z = 0. By balancing thermal diffusion above the vent with the heat flux
across z = 0, we deduce that

KTz(r, θ, z = 0+, t) = ρcpws[T (r, θ, z, t)]
z=0+

z=0− = ρcp(T − Te)ws. (2.9)

The surface of the dome, z = h(r, θ, t), is free:

ht + [uhr + vhθ/r]z=h = w |z=h (2.10)

and  τrr − p τrθ τrz

τrθ τθθ − p τθz

τzr τθz τzz − p


z=h

 −hr
−hθ/r

1

 =

 0

0

0

 . (2.11)
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The surface thermal boundary conditions take the form,

F(T ) = −Kn · ∇T , (2.12)

where n is the outward-pointing normal. Various forms are possible for the heat flux
F(T ), depending on the specific physical conditions. For lava, if the dominant heat loss
is thermal radiation, the Stefan–Boltzmann black-body law is appropriate, but forced
convection of heat by wind can also be appreciable (Neri 1998). For experimental slur-
ries, domes are cooled by conduction and convection in overlying water. The charac-
terization of the cooling becomes especially involved when convection is turbulent. We
avoid these complications here by selecting a simple model, Newton’s law of cooling:

F(T ) = a(T − Ta), (2.13)

where a is a constant and Ta is the ambient temperature to which the fluid cools.
If the temperature drop is small, this model is a first approximation to any cooling
law. For completeness, and also to judge the importance of their effect later, we also
quote the radiative and convective fluxes:

FR(T ) = Eσ(T 4 − T 4
a ) and FC(T ) = γρaca

(
gαaκ

2
a

νa

)1/3

(T − Ta)4/3, (2.14)

where σ is the Stefan–Boltzmann constant and E is the emissivity (a positive constant
less than unity), ρa, ca, αa, κa, νa reflect the physical properties of the ambient fluid, and
γ is an empirical constant, usually set to 0.1 (Griffiths & Fink 1997).

3. Non-dimensionalization
We remove dimensions from the equations as follows: we take a characteristic

thickness of the fluid layer, H , as the dimension of z, and L to denote a horizontal
length scale. We measure the speeds u and v by V , and w by HV/L, time by L/V , and
pressure by ρgH . The temperature field is non-dimensionalized using the temperature
drop between eruption and ambient temperature:

T = Ta + (Te − Ta)Θ ≡ Ta + ∆TΘ. (3.1)

Next, let

η =
K∗Vn−1

Hn−1
and V =

ρgH3

ηL
, (3.2)

where K∗ is the characteristic value of K(T ) at T = Ta. In dimensionless form, the
governing equations then become
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and

Θt + uΘr +
1

r
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2
βτij γ̇ij +

κ

ε2

[
Θzz + ε2 1

r
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Θθθ

]
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A number of dimensionless parameters now appear. These are the aspect ratio of the
fluid, ε, the Reynolds number, Re, an inverse Péclet number, κ, and the Brinkman
number, β:

ε =
H

L
, Re =

ρVL

η
, κ =

K
ρcpVL

, β =
ηLV

H2ρcp∆T
. (3.8)

With the units V/H and ρgH2/L for the strain rates and stresses, the constitutive
relations become

γ̇ij =

 2εur ε[(uθ − v)/r + vr] uz + ε2wr

ε[(uθ − v)/r + vr] 2ε(u+ vθ)/r vz + ε2wθ/r
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K(T )

K∗
, B(Θ) = B

τp(T )

τp∗
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B =
τp∗H
ηV

≡ τp∗L
ρgH2
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We refer to B as the Bingham number. For our illustrative model, A = exp (−GΘ)
and B = B exp (−SΘ), where G = G̃∆T and S = S̃∆T .

In non-dimensional variables the boundary conditions become

u = 0, v = 0, w = ws(r, t), κΘz = ε2(Θ − 1)ws(r, t) on z = 0, (3.13)

and

ht + uhr + vhθ/r = w

τrz + phr = εhrτrr − ετrθhθ/r
τθz + phθ/r = εhrτrθ + ετθθhθ/r

p = ε(τzz − εhrτrz)− εhθτθz/r
κ(Θz − ε2hrΘr − ε2hθΘθ/r
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√
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2


on z = h(r, θ, t),

(3.14)

where α is a parameter measuring the degree of surface cooling:

α =
aL

ρcpVH
. (3.15)

More detailed models of the surface thermal boundary condition can be incorporated
in (3.14) by taking α to depend on Θ. For example, the convective and radiative flux
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Silicic Basaltic Wax–kaolin
Constants lava lava Wax slurry Syrup

Density, ρ (kg m−3) 2600 2600 1126 1450 1438
Viscosity, η (Pa s) 109 104 0.18 0.78 105

Yield stress, τp (Pa) 105 102 0 84 0
Specific heat, cp (J kg−1 ◦C−1) 1150 1200 2500 1800 2059
Conductivity, K (J m−1 s−1 ◦C−1) 1.26 2 0.218 0.365 0.358

Table 1. Physical constants. The data for lava are taken from Griffiths & Fink (1993), McBirney &
Murase (1984), Pinkerton & Norton (1995) and Shaw (1969). The data for wax and the wax–kaolin
slurry are taken from Griffiths & Fink (1997) and those for syrup from Stasiuk et al. (1993). The
characteristic value of viscosity corresponds to the maximal value at the low end of the temperature
range.

Extrusion conditions Silicic lava Basaltic lava Wax and slurry Syrup

Dome radius, L (m) 102 103 0.10 0.5
Effusion rate, Q (m3 s−1) 1 10 10−6 10−6

Eruption temperature, Te (◦C) 1100 1400 21 21
Typical temperature drop, ∆T (◦C) 300 300 10 30

Table 2. Typical extrusion conditions. The data for lava are taken from Griffiths & Fink (1993),
McBirney & Murase (1984) and Shaw (1969); the temperature drop assumes that cooling lowers
the temperature to the solidification value, below which our approximations break down. The data
for wax and the wax–kaolin slurry are taken from Griffiths & Fink (1997), and for corn syrup from
Stasiuk et al. (1993).

laws in (2.14) can be written as

α(Θ) =

{
αR[(1 +Θ∆T/Ta)

4 − 1]

αCΘ
4/3

(3.16)

respectively, where
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EσLT 4

a

ρcpHV∆T
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γρacaL

ρcpVH

(
gαaκ

2
a∆T

νa

)1/3

. (3.17)

Though it is straightforward to deal with these more complicated thermal boundary
conditions, we do not use them in our numerical computations because they do not
qualitatively change the predictions of the theory.

3.1. Non-dimensional parameters

In tables 1 and 2 we summarize the physical constants and extrusion conditions typical
for lava and experiments. From these data we can derive rough, order-of-magnitude
estimates of the non-dimensional parameters; see table 3, for n = 1. These estimates
are obtained by connecting the dimensional (Q) and dimensionless (q) extrusion rates,

Q = LHVq, (3.18)

together with the relation,

H =

(
K∗L1−nQn

ρgqn

)1/(2n+2)
(

=

[
η∗Q
ρgq

]1/4

if n = 1

)
, (3.19)

that follows from eliminating V from (3.18) using equation (3.2).
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Parameter Silicic lava Basaltic lava Wax and slurry Syrup

ε (ηQ/ρgqL4)1/4 0.1 0.001 0.01 0.1

Re (ρ5gQ3/η5q3)1/4 10−7 1 1 10−7

B τp∗L(q/ηρgQ)1/2 3 0 0 and 100 0

κ (ηq3/ρgQ3)1/4K/ρcp 10−5 10−7 0.001 0.01

β (ρ3g3ηQ/q)1/4/ρcp∆T 10−4 10−5 10−6 10−5

G G̃∆T 10–18 5 1 7

Table 3. Typical values of non-dimensional numbers, given the physical constants and extrusion
conditions in tables 1 and 2, assuming n = 1 and q = π. The values of G̃ are estimated from
data given by McBirney & Murase (1984), Fink & Griffiths (1990) and Stasiuk et al. (1993). The
parameter G is assumed to be equal for both wax and the wax–kaolin slurry. If we take Tα to
measure the atmospheric temperature, rather than the lava solidification temperature, then β is 3.5
times smaller and G is 3.5 times larger for silicic and basaltic lava.

Lastly, there is a further dimensionless parameter in the boundary conditions that
measures the cooling rate. Our Newton cooling law is a simple prescription that has
meaning only as an approximation to a radiative or convective cooling law. Hence,
to gauge the importance of cooling, we estimate αR and αC: based on the numbers
given in tables 1 and 2, and supplemented by data given by Griffiths & Fink (1997),
we find that αR and αC are order unity for q = π.

A key observation is that ε, the aspect ratio, is small for the domes we study; in the
next section, we exploit this small parameter to derive a reduced description of the
problem. We also take Re to be order unity or less, guided by the slow evolution of
the lava and experimental domes, and the Brinkman number, characterizing frictional
heating, to be negligible (see table 3).

The only thorn in our side is the low value of the conductivities suggested by
the estimates in table 3. Strictly speaking, the asymptotic expansion takes the limit
ε → 0 with κ order one, and is not compatible with the data in the table which
suggest that κ < ε for all the materials of interest. However, as mentioned later, the
main parameter that must be large in order to follow the asymptotic pathway is the
ratio κ/ε2 (the factor in front of the vertical diffusion term in the heat equation).
Unfortunately, even with this rescaling of κ, the theory is still inapplicable to lava
(and corn syrup); we delve into the physical meaning of this later.

For wax and clay–wax slurries, on the other hand, the rescaling appears to justify
the asymptotic analysis. However, although our theory predicts that ε ∼ 10−2 for
Griffiths & Fink’s experiments, direct measurements of H/L suggest values of 0.1 or
larger. Such values for ε would push us into a regime where κ/ε2 is actually small,
and the theory is therefore inapplicable. In this regard, it is important to appreciate
that in the theory, H and L are not independent parameters, but are connected
through the effusion rate, Q. It is this connection that provides the estimate of ε. We
have two possible explanations for the discrepancy. First, there are factors of order
unity floating around, and it only takes a factor of five or so to bring our theoretical
estimate up to a value of 0.1; in principle, such factors are contained in the theory,
and do not necessarily imply that the analysis breaks down. Second, the maximal
heights are reached over the vent, which is where the asymptotic analysis formally
breaks down; perhaps the discrepancy reflects a failure of lubrication theory.
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Thus, although a direct estimate of κ/ε2 from the tables appears to justify our
theory with regard to experiments, we should be more cautious. The theory is
probably marginal at best; perhaps it works well for a subset of the experiments,
but it may only crudely model the remainder. Nonetheless, because no other theory
is available, we press on with the current analysis in order to provide at least one
theoretical benchmark.

4. Thin-layer theory
In this section we exploit the small aspect ratio of the dome (ε� 1) to reduce the

governing equations. We begin by substituting the asymptotic sequences,

u = u0 + εu1 + · · · , v = v0 + εv1 + · · · , w = w0 + εw1 + · · · , Θ = Θ0 + εΘ1 + · · · ,
(4.1)

into the governing equations and then gather together terms of the same order in ε.
This generates a hierarchy of equations that we solve order by order, beginning with
order ε0:

p0r = ∂zτ0rz ,
1

r
p0θ = ∂zτ0θz, p0z = −1, (4.2)

1

r
∂r(ru0) +

1

r
v0θ + w0z = 0, Θ0zz = 0 (4.3)

and (
τ0rz

τ0θz

)
=

1

γ̇0

[A(Θ0)γ̇
n
0 +B(Θ0)

](u0z

v0z

)
for B(Θ0) < τ0, (4.4)

u0z = v0z = 0 for B(Θ0) > τ0, (4.5)

where

τ0 ≡
√
τ2

0rz + τ2
0θz and γ̇0 =

√
u2

0z + v2
0z . (4.6)

We similarly deal with the boundary conditions, which provide the leading-order
relations,

u0 = v0 = 0, w0 = ws(r, t), Θ0z = 0 on z = 0 (4.7)

and

h0t + u0h0r + v0h0θ/r = ws(r, t), τ0rz = τ0θz = p0 = Θ0z = 0 on z = h0(r, θ, t). (4.8)

The leading-order heat equation has the solution, Θ0 = Θ0(r, θ, t), indicating that
the dome is isothermal in the vertical. This is a vital simplification; we return to
consider cases in which we cannot make this approximation in § 7. The remainder of
the leading-order equations fix the vertical structure:

p0 = h0 − z, τ0rz = −h0r(h0 − z), τ0θz = −h0θ(h0 − z)/r. (4.9)

Because τ0 = (h0 − z)
√
h2

0r + h2
0θ/r

2 decreases with z, the largest shear stress occurs
along the base of the fluid; this must exceed B(Θ0) in order for the fluid to move. But,
τ0 = 0 at z = h0, and so the stress falls beneath the yield stress at a level z = Y0(r, θ, t).
We refer to this level as the yield surface, and the fluid is locally in motion if Y0 > 0.

Below the yield surface, z < Y0, we have(
u0z

v0z

)
= −(h2

0r + h2
0θ/r

2)(1−n)/2nA−1/n(Y0 − z)1/n

(
h0r

h0θ/r

)
. (4.10)
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Above this surface, z > Y0, the fluid is rigid to leading order and u0z = v0z = 0.
However, this is not a true ‘plug flow’ – a more refined asymptotic analysis reveals
that this region is weakly yielding (Balmforth & Craster 1999), and sufficiently so to
account for the radial expansion of the dome. A better terminology is to refer to this
region as a ‘pseudo-plug’.

We next formulate the vertical integrals of u0(r, θ, z, t) and v0(r, θ, z, t):

U(r, θ, t) =

∫ h0

0

u0(r, θ, z, t) dz and V(r, θ, t) =

∫ h0

0

v0(r, θ, z, t) dz. (4.11)

By using the leading-order solution, we may explicity evaluate these integrals. An
evolution equation for h0(r, θ, t) is then derived by integrating the continuity equation
and using U, V and the free-surface boundary condition. The result, given below as
equation (4.14), is one of the key equations in our thin-layer theory. A second equation
is formulated by proceeding to higher order in the expansion, and specifically taking
Θ1 = 0 and considering the order-ε2 terms of the heat equation:

κΘ2zz = Θ0t + u0Θ0r +
v0

r
Θ0θ − 1

r
κ∂r(rΘ0r)− 1

r2
κΘ0θθ + β

(
u0h0r +

1

r
v0h0θ

)
. (4.12)

The integral of this equation from z = 0 to h0, together with the boundary conditions,

κΘ2z = ws(Θ0 − 1) on z = 0

κ(Θ2z − h0rΘ0r − h0θΘ0θ/r
2) = αΘ0 on z = h0(r, θ, t),

}
(4.13)

provides an equation for Θ0, which appears below as (4.15).

4.1. The thin-layer model

We summarize the results of the expansion by quoting the thin-layer equations in all
their glory:

ht +
1

r
∂r(rU) +

1

r
Vθ = ws, (4.14)

and

Θt +
U
h
Θr +

V
rh
Θθ =

κ

rh
∂r(rhΘr) +

κ

r2h
∂θ(hΘθ)

−α
h
Θ +

ws

h
(1−Θ)− β

h

(
hrU+

hθ

r
V
)
, (4.15)

where [U(r, θ, t)

V(r, θ, t)

]
= −n(h

2
r + h2

θ/r
2)(1−n)/2nY 1+1/n

(n+ 1)A(Θ)1/n

(
h− nY

2n+ 1

)[
hr

hθ/r

]
(4.16)

and

Y =

[
h− B(Θ)√

h2
r + h2

θ/r
2

]
+

. (4.17)

Here we have dropped the zero subscript on the understanding that each variable
hereafter refers to the leading-order term, and incorporated the yield condition into
the definition of Y (the subscript + in (4.17) implies we take the value of the quantity
only where it is positive and zero elsewhere). From hereon we ignore the viscous
heating term in equations (4.15) because the parameter β is small (see table 3) for
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all the materials we have in mind. However, for some polymeric materials relevant
for thermosetting plastics, the effects of viscous heating can be large (Pearson 1977).
The inverse Péclet number κ is also small and is a candidate for omission on similar
grounds. But this parameter multiplies the highest derivative terms in (4.15) and hence
we retain it because of its regularizing effect.

5. Cooling axisymmetrical domes
We now present some results of the thin-layer model for cooling axisymmetrical

domes. In this case, we set ∂θ → 0, drop the θ argument and take V = 0. The equa-
tions are then solved using the numerical scheme described in paper I, with initial
conditions, h(r, 0) = 10−3 exp (−r2/25) and Θ(r, 0) = 0, and radial boundary condi-
tions, hr(0, t) = hr(r∞, t) = Θr(0, t) = Θ(r∞, t) = 0 (r∞ is a radius that is sufficiently
far from the vent to ensure that the outer boundary condition has no effect). For the
source, we prescribe the incoming flux and vent radius: ws(r, t) = 0.1(r2∗ − r2)ϑ(r2∗ − r2)
and r∗ = 0.15. Note that q ∼ 10−4 (rather than order one, as assumed in table 3), so
the extrusion time is relatively long. We choose this small extrusion rate because the
dome height and radius are then order-one numbers but the vent radius is small. If
we take q order unity, the vent radius is order one and the dome proportions can
become numerically large.

We also focus on thermal effects rather than variations in B and n. The effect of
these parameters is similar to the isothermal problem (paper I). In that case, the yield
stress dominates once B ∼ 0.1, and one encounters Newtonian-like behaviour for
B ∼ O(10−5) (with ws(r, t) chosen as above). Also, the shear thinning of the fluid can
have similar effects to a yield stress.

5.1. Representative solutions

To illustrate the typical features of evolving non-isothermal domes, we describe
three representative cases with B(Θ) = B and A(Θ) = exp (−GΘ) (i.e. S = 0).
This models a Herschel–Bulkley material with constant yield stress and temperature-
dependent consistency, and is perhaps relevant to wax–kaolin slurries. The examples
are computed for three values of α, with B = 10−3, G = 8, κ� 1 and n = 1, and are
shown in figures 1–3.

In all three cases, the temperature field evolves to a quasi-steady profile (in the
final case the progress to this profile is very slow). Such a profile is possible because
horizontal diffusion is relatively small in these models and U(r, t) becomes approx-
imately steady (see figure 1c). At this stage of the dome expansion, there is then a
local balance between surface cooling, advection and heat input:

UΘr ≈ ws(1−Θ)− αΘ. (5.1)

Thence, away from the vent,

Θ → exp

[
−α
∫ r

ds/U(s)

]
, (5.2)

which suggests that the thermal profile decays spatially at a rate proportional to α
(but this ignores how thermal effects change U(r)).

When the dome cools rapidly, advection is unimportant and

Θ(r, t) ∼ ws(r, t)/[α+ ws(r, t)]. (5.3)
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Figure 1. Dome and temperature evolution for B = 10−3, G = 8, α = 0.01, κ = 10−5 and n = 1.
(a) The height field at successive instants, spaced by 500 time units; the dotted curves show the
corresponding yield surfaces, Y (r, t). (b) The temperature field at the same instants. Also shown by
the dashed line is the rapid cooling approximation given by (5.3). (c) U(r, t).

Temperature gradients are then concentrated at the vent (figure 1), and the tempera-
ture elsewhere falls to the ambient level. At the opposite extreme, there is little cooling
and fluid expands outwards at the eruption temperature (see figure 3).

In both limits, the dome evolves isothermally. The cool dome in figure 1 is much like
an isothermal dome with the same Bingham number. However, the hot dome is more
like an isothermal dome with a Bingham number of 0.1. This is because the cool dome
evolves at the background temperature and with the characteristic viscosity values
used to compute B. At these viscosities, the fluid is almost Newtonian. However, the
hot dome has an elevated temperature and an effective viscosity that is lower by a
factor of about 104. This is equivalent to an increase in B of 100, as implied by the
definition of the Bingham number in table 3 (B ∼ η−1/2). Thus the hot dome has an
effective Bingham number of 100B = 0.1, and is yield-stress-dominated.

The dome with an intermediate cooling rate is midway between the two extremes.
As a result, the structure displays features characteristic of both the cool, almost
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Figure 2. Dome and temperature evolution for B = 10−3, G = 8, α = 10−4, κ = 10−8 and n = 1.
(a) and (b) As in figure 1.

Newtonian dome, and the hot, yield-stress-dominated dome. In particular, the quasi-
steady temperature profile acts like a ‘cooling front’. For radii inside this front, the
dome is hot and yield-stress dominated. But beyond these radii, the fluid is almost
Newtonian and cool. Note that we have engineered this behaviour by knowing the
magnitude of the overall decrease in viscosity (essentially, G), and then judiciously
selecting the Bingham number. Had we chosen a much smaller Bingham number, the
fluid would have been approximately Newtonian, or if B had been larger, we would
have seen yield-stress-dominated evolution.

5.2. Radius and height scalings

When the fluid is isothermal and extruded from a point source, there are simple scaling
laws that characterize the radius and height of the dome in two particular limits of
the fluid rheology (Huppert et al. 1982; Blake 1990): R(t) ∼ t1/2 and h(0, t) ∼ t0 for
viscous fluid, and R(t) ∼ t2/5 and h(0, t) ∼ t1/5 for a fluid dominated by yield stress.
In figure 4 we compare these scalings with the radius and height evolution of our
representative domes.

As expected from the discussion above, the cool dome has Newtonian scalings (as
mentioned in paper I, the height of a Newtonian dome does not perfectly follow the
scaling h(0, t) ∼ t0 because the vent has finite size), and the hot dome has scalings close
to those of the yield-stress-dominated case. The dome with an intermediate cooling
rate initially follows a radius scaling much like the hot dome. But then, between times
of 102 and 103, switches over to a scaling more like the cool dome. This switch occurs
as the dome radius moves through the cooling front that forms at radii from 0.2 to
0.8. Therefore, in this particular case, the evolution of the radius and height displays
cooling-induced transitions.
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Figure 3. Dome and temperature evolution for B = 10−3, G = 8, α = 10−6, κ = 10−6 and n = 1.
(a) and (b) As in figure 1.
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5.3. Crystallization: temperature-dependent yield stresses

The illustrative models above have a constant yield stress. There is some argument
for this in the case of kaolin suspensions (particle concentration does not increase on
lowering the temperature), though this may underestimate the effect of temperature
on slurry microstructure (Annis 1967; Briscoe et al. 1994). But for silicic lavas,
the lowering of the temperature induces a gradual crystallization of the silicates,
and this must affect the yield stress. A crude way to incorporate crystallization is
to use the Einstein–Roscoe relations (Pinkerton & Stevenson 1992) to define the
material properties in terms of the concentration of crystals, and assume the particle
concentration to follow an Arrhenius-type dependence on temperature. On using
a Frank–Kamenetskii-style approximation, one then obtains the exponential forms,
A(Θ) = exp (−GΘ) and B(Θ) = B exp (−SΘ), of our illustrative model.

A sample computation using G = S = 4 is shown in figure 5. The most striking
feature of this picture is that the yield surfaces are highest inside the cooling front.
This is exactly the reverse of what we see in figure 2 and reflects the fact that cooling
has a more significant effect on the yield stress than the viscosity for these parameter
values: though A and B have the same temperature dependence, the flow depends
differently on A and B. Indeed, the effective yield stress is B/A1/2 ∝ exp (−2Θ).
Thus, the fluid has a strong yield stress outside the cooling front but is almost
Newtonian inside.

Again, R(t) and h(0, t) display transitions that one can correlate with the passage
of the dome radius through the cooling front. But this time we pass from Newtonian
scalings to yield-stress-dominated ones.
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6. Dome instability

When the viscosity depends strongly on temperature, axisymmetric domes can
be prone to non-axisymmetric instabilities. The basic mechanism underlying this
instability is tied to both the cooling law, −αΘ/h, and the temperature dependence
of the viscosity. Essentially, a perturbation that locally decreases the height of the
dome induces the fluid to cool more rapidly; thus the viscosity becomes higher and
flow is locally reduced. Conversely, if the perturbation increases the dome thickness
elsewhere, the cooling is less pronounced in those regions and the fluid surges forward.
Thus, perturbations grow and create non-axisymmetrical structure as the cool regions
slow down and the hot regions accelerate and draw more fluid into lobes behind
them.

To explore this further, we consider an expanding, cooling, axisymmetric dome,

denoted ĥ(r, t), Û(r, t) and Θ̂(r, t), and add infinitesimal perturbations, distinguished
by a prime decoration and with angular dependence exp (imθ):

h(r, θ, t) = ĥ(r, t) + h′(r, t)eimθ, Θ(r, θ, t) = Θ̂(r, t) +Θ ′(r, t)eimθ, (6.1)

U(r, θ, t) = Û(r, t) +U′(r, t)eimθ and V(r, θ, t) =V′(r, t)eimθ; (6.2)

the integer wavenumber m must be varied to determine the stability of each azimuthal
mode. After substituting these relations into the thin-layer equations, we find

h′t +
1

r
∂r(rU′) +

im

r
V′ = 0 (6.3)

and

ĥΘ ′t + h′Θ̂t +U′Θ̂r + ÛΘ ′r = κ

[
1

r
∂r(rh

′Θ̂r + rĥΘ ′r)− m2

r2
ĥΘ ′

]
− (α+ ws)Θ

′. (6.4)

These equations cannot be solved by the usual methods of linear stability theory
(decomposition into normal modes) because the equilibrium state is inhomogeneous
and time-dependent. Instead, we solve (6.3)–(6.4) as an initial-value problem for each
m, using the same numerical scheme as before and the initial conditions

h′(r, 0) = 0 and Θ ′(r, 0) = 10−3 exp (−r2/5). (6.5)

To determine whether non-axisymmetric instabilities are possible we specialize to a
material with no yield stress and n = 1. Our results for axisymmetrical domes suggest
that this case is likely to be most influenced by thermal effects and therefore unstable.
The results are shown in figures 6–9, for κ = 10−5 and α = 10−4.

Figure 6 displays the evolution of the equilibrium and perturbation for the m = 3
mode with G = 8. In this case a cooling front forms in the equilibrium dome, and, in
the vicinity of the resulting temperature gradient, the perturbation amplifies in time.
In other words, the dome is unstable; height perturbations at the cooling front feed
a growing thermal perturbation.

The height perturbation, h′(r, t), also develops a sharp peak at the periphery of
the dome. This is a kinematic effect arising due to our Eulerian description of
the perturbation; the sharp peak reflects the motion of the dome’s edge. In fact,
locally, the periphery of the dome is much like a travelling planar front with a

neutral, translational eigenmode proportional to ĥr . That function is sharply peaked
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Figure 6. The evolution of the dome and temperature field for m = 3 with α = 10−4, κ = 10−5 and
G = 8; the curves show the solutions at successive instants spaced by 500 time units.

at our dome edge, but not singular due to our choice of initial condition (ĥ remains

finite ‘outside’ the dome). The form, rξ(t)eimθĥr(r, t), reproduces the structure of the
perturbation near r = R.

At the end of the simulation we add the perturbation onto the equilibrium profile
in figure 7 to gain an impression of the overall effect of the instability. Because this
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is a linear calculation, we have no way to compute the amplitude of the linear mode;
instead we add in an arbitrary multiple, A, of the perturbation, guided mainly by
aesthetics. We also subtract out the almost divergent part of h′(r, teimθ) by fitting the

function rξ(t)eimθĥr(r, t) to the sharp peak near r = R and then shifting the radial

coordinate: ĥ(r, t)→ ĥ[r(1 + Aξ eimθ), t].

More details of the growth of the instability are shown in figure 8, which displays
the global measures of the perturbation,

∫
h′(r, t)r dr and

∫
Θ ′(r, t)r dr, for m = 3,

4 and 5. After an initial transient (roughly given by the time needed to form the
cooling front), the instability grows approximately exponentially. This motivates the
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definition of a growth rate,

η =
1

Π

∫ Π

0

dt

∫ r∞

0

Θ ′(r, t)r dr, (6.6)

where Π is the length of the computation.
Growth rates for G = 4, 6 and 8 are shown in figure 9 for m = 0, . . . , 6. For G = 8,

the modes with m = 3 and 4 are unstable, but the dome with G = 6 is stable. Hence
there is a critical value for G (just above 6) for instability. Moreover, near onset, m = 3
is the preferred mode. Note that the axisymmetrical mode, m = 0, has zero growth
rate. This is because axisymmetrical perturbations cannot capitalize on the instability
mechanism. Also, an m = 0 perturbation corresponds to a shift of the equilibrium
state to another axisymmetric dome that expands at a similar rate. Hence the mode
will neither grow nor decay.

Because the critical value of G is relatively large, and much bigger than what we
expect for clay–wax slurries (see table 3), it is unlikely that the non-axisymmetric insta-
bility can explain the formation of structure in Griffiths & Fink’s laboratory domes.
This is consistent with Griffiths & Fink’s conclusions that their non-axisymmetric
morphology is caused by solidification. Estimates of G are much larger for both
lava and syrup (table 3). Hence, the instability may be of geological importance and
relevant to the patterns seen in the experiments conducted by Wylie et al. (1999).
However, there are some problems with the thin-layer theory in these contexts, as
discussed next.

7. The limit of small κ
7.1. Surface thermal boundary layers

So far, we have described solutions to the thin-layer equations, but have not attempted
to compare the results with either real lava or experimental slurries. There is one
important aspect of these applications that makes such a comparison especially
difficult: as indicated in table 3, for both the lava and slurry the dimensionless
diffusion coefficient (inverse Péclet number) κ is small; ε > κ. But the asymptotic
expansion assumes that κ ∼ O(1) and ε � 1. Similar theoretical problems plague
models of glaciers (Hutter 1983).

A more suitable asymptotic scaling is to take κ = εNκ̃, with N ≈ 5 for silicic
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lava (κ ∼ 10−5 ∼ ε5), N ≈ 2 for basaltic lava and corn syrup (κ ∼ 10−6 ∼ ε2 and
κ ∼ 10−2 ∼ ε2, respectively), and N ≈ 1 for clay–wax slurries (κ ∼ 10−3 ∼ ε1). The
dimensionless heat equation then becomes

Θt + uΘr + wΘz − 1

r
εNκ̃∂r(rΘr) = εN−2κ̃Θzz (7.1)

(ignoring frictional heating and non-axisymmetry).
The key physical assumption that underlies the asymptotic theory developed in the

earlier sections is that thermal diffusion acts sufficiently quickly to create a dome
that is isothermal in the vertical. In the terminology of lava modellers, this is the
‘thermally mixed’ case, and is often assumed without justification. But to reach such
a state, the right-hand side of (7.1) must be the dominant term in the equation.
This is guaranteed if N < 2, which may be true for wax and clay–wax slurries (but
see § 3.1). In other words, although κ is small, the important physical parameter in
the heat equation is κ/ε2, which remains large. Physically, this signifies that thermal
diffusion proceeds sufficiently quickly to smooth the vertical thermal structure, and
justifies the asymptotic theory. In fact, if N = 1, one can reformulate the scalings
of the expansion to suit this particular case; the only difference in the outcome is a
redefinition of the parameters and the disappearance of horizontal diffusion from the
heat equation. We have preferred to stay with N = 0 in the main discussion because
this distinguished limit retains as much of the physics as possible within the confines
of a simple thin-layer theory.

However, for silicic lava (with N > 2), to leading order, the heat equation becomes

Θt + uΘr + wΘz = 0, (7.2)

which indicates that fluid advection dominates the thermal evolution. (According to
the estimates in table 3, basaltic lava and corn syrup fall midway between the two
extremes; in this case one obtains a diffusion–advection equation at leading order).
The relevant solution is Θ = 1; fluid expands at the eruption temperature and does
not cool. However, heat is still lost from the surface and so a superficial cooling layer
develops in which strong temperature gradients appear. This thermal boundary layer
extends over a region of size ζ = ε1−N/2(h − z), wherein we may rewrite the heat
equation in the form

Θt + usΘr + wszζΘζ ∼ κ̃Θζζ , (7.3)

where the subscript s indicates the value at z = h(r, t), and wsz(r, t) ≡ [wz(r, z, t)]z=h.
This equation models the diffusive advance of the thermal boundary layer into the
dome interior.

For viscoplastic domes, provided the boundary layer remains inside the pseudo-
plug, thermal effects have no influence on the spreading dynamics because there
is little shear inside this region and therefore negligible viscous stress. This leads
to the conclusion that a viscoplastic dome will initially expand isothermally at the
extrusion temperature. In other words, the pseudo-plug ‘shields’ the dome from effects
of cooling. Shielding fails when the thermal boundary layer finally advances into the
yielded region beneath the pseudo-plug. But, this happens on a long, diffusive time
scale and will not be important in many situations. The only region which can be
seriously affected is near the periphery of the dome, where h→ 0 and most time has
elapsed.

Because the thermal boundary layer adds vertical structure that is not taken into
account, thin-layer theory is of questionable significance for lava. Nevertheless, cooling
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is only significant near the dome’s edge where h → 0, and there is a crude analogy
between the effect of the advancing boundary layer and the simple Newton cooling
term, −αΘ/h. However, the thin-layer theory also predicts that, in the limit κ → 0
with α finite, the dome always cools. But, with κ → 0, the thermal boundary layer
never migrates into the fluid interior. In other words, the cooling law is not diffusion-
limited in the theory. To remedy this inconsistency one can resort to Galerkin-style
techniques to build a diffusion-limited cooling rate into the thin-layer theory. The
result replaces the term α with the quantity

α̃ ∼ 4ε4α2

π2κ

[(
1 +

π2κ

4αε2h

)1/2

− 1

]2

, (7.4)

which predicts the correct limits as ε → 0 or κ → 0 of the cooling rate of the least
quickly decaying vertical thermal mode.

However, fundamentally there is a difficulty here that our simple thin-layer theory
does not address. We must await the development of a theory that properly builds in
the vertical thermal structure. Until then, we hope that our model provides a crude
first approximation for building thermal effects into dome models.

8. Concluding remarks
A main goal in the study of lava flows is to infer the conditions under which the

lava was extruded, given the morphology of the flow. In their geometrical simplicity,
domes provide the first test of theories that attempt to make this inference. Although
we are still setting the stage in this and our previous work, our intention is to establish
a theoretical foundation upon which to study the issue.

Our approach here has been to use asymptotic expansions to derive a reduced
model that avoids the complications of the full problem, but incorporates the es-
sential physics and is still straightforward to solve. The procedure is much like
conventional lubrication theory, but novel in that we include yield stresses, shear
thinning, temperature-dependent rheology and whatever surface cooling law is ap-
propriate. Moreover, we know of no previous studies that approach the fingering
instability problem in the fashion of § 6. That approach was forced upon us be-
cause of the inhomogeneous and time-dependent structure of the background state,
a complication that does not appear in other fingering problems.

A significant drawback of the thin-layer model derived here is that it is probably
a crude approximation for lava and some laboratory analogues: thermal diffusion
proceeds too slowly in these fluids to allow us to simplify the heat equation as in § 4.
Although this detracts from the general applicability of the theory, our motivation is
not entirely one of rigorous asymptotics. Rather, our aim is to derive a useful reduced
model of the dome, irrespective of the precise physical conditions in any experiment
or geophysical setting. Indeed, the asymptotic scalings comprise a distinguished limit
of the parameters of the problem. Typically, asymptotic theories derived in a distin-
guished limit have the disadvantage that they have limited ranges of validity and
may not be asymptotic over the parameter range of interest. However, these reduced
models contain much of the physics and, in a cruder sense, capture the essence of the
full problem. For this reason, we hope the thin-layer equations will provide a useful
tool for lava-dome modellers.

By way of illustration, we mention some implications for dimensional analysis.
To date, such analysis has been the main theoretical approach to the modelling of
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lava domes. But its suitability must be judged by comparison with a more detailed
mathematical model, such as the thin-layer theory (at least in cases without thermal
boundary layers). Indeed, our thin-layer model verifies the predictions of dimensional
analysis in some asymptotic limits (see paper I). However, in paper I we also found
that if the dome is not dominated by one particular force balance, the evolution need
not follow any of the scaling laws. Moreover, dimensional arguments also predict
cross-overs between regimes in which different force balances prevail; we saw little
evidence for such transitions in our earlier isothermal computations and experiments.
On the other hand, transitions occur in the dominant force balance in non-isothermal
domes as a result of cooling. Overall, it seems that dimensional scaling may be
misleading without the added foundation of a detailed mathematical model.

Of course, there is much yet missing from the model. An essential next step
is to model the boundary-layer structure of the temperature field. Also, we have
ignored completely the phase change associated with solidification. In fact, the fluid
first solidifies and creates a crust in the surface cooling layer. To model the phase
change and the resulting structure of the dome, we need more physics. But that
physics is intimately tied to the fluid rheology, which enriches our problem over other
fluid solidification problems (e.g. Worster 1997). In analogy with those problems, we
anticipate that solidification first produces a ‘mushy zone’ containing a mixture of
fluid and solid (Hills, Loper & Roberts 1982). This zone buffers the molten interior
from the solid crust that subsequently forms at the surface, creating a layered structure
in the superficial regions of the dome (Neri 1998). The crust can also directly affect
the dynamics by contributing additional forces. For example, if the crust forms a
solid shell, it may exert a tensile restraining force (Iverson 1990). But if it has a very
fractured composition, it may act more like a viscous fluid ‘skin’ (Scriven 1960).

A further complication is that the crust may become thickest near the dome’s edge.
In fact, a solid ‘talus’ typically forms at the rim of a lava dome, composed of solidified
material and debris. The expanding dome must push this material ahead of itself, or
ride over it, providing extra resistance to the flow. In modelling the talus we would
have to deal directly with the contact ring at the edge of the fluid dome. Here, the
asymptotic theory formally breaks down, a problem that we have avoided by taking
initial conditions in which fluid was present everywhere. But we could consider this
ring in more detail, much as has been done in a variety of studies of spreading of
liquid drops (Ehrhard & Davis 1991).

Finally, although we have found that domes can suffer non-axisymmetrical instabil-
ity, we have not given a systematic theoretical study. This is partly because the results
do not offer a convincing explanation for the morphology of laboratory slurries; we
must await the inclusion of solidification before attempting to rationalize Griffiths
& Fink’s observations. And for lava, although the parameter values suggest that the
instability may operate, our model has no surface cooling layer. In addition, there
are mathematical problems with the Eulerian computational scheme because the per-
turbations diverge at the dome’s periphery. We can correct this feature by adopting
a Lagrangian description of the fluid (and again dealing with the dynamics of the
contact ring), or by considering nonlinear perturbations. We leave both advances for
the future.
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